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Abstract. It is well-known that a standard lubrication analysis of the equations of motion in thin liquid films
coating the inside surface of a rotating horizontal cylinder leads, under creeping-flow conditions, to a cubic equa-
tion for the film thickness profile which, depending on the fluid properties of the liquid, the speed of rotation
and the fill fraction F , has either (a) a continuous, symmetric (homogeneous) solution; (b) a solution contain-
ing a shock; or (c) no solution below a certain speed. By means of an asymptotic analysis of the recently pro-
posed “modified lubrication equation” (MLE) [M. Tirumkudulu and A. Acrivos, Phys. Fluid 13 (2000) 14–19], it
is shown that the solutions of the cubic equation referred to above correctly describe the film-thickness profiles
although, when shocks are involved, under exceedingly restrictive conditions, typically F ∼10−3 or less. In addition,
using the MLE, the linear stability of these film profiles is investigated and it is shown that: the “homogeneous”
profiles are neutrally stable if surface-tension effects are neglected but, if the latter are retained, the films are
asymptotically stable to two-dimensional disturbances and unstable to axial disturbances; on the other hand, the
non-homogeneous profiles are always asymptotically stable, thus confirming results given earlier [T.B. Benjamin,
W.G. Pritchard, and S.J. Tavener (preprint, 1993)] on the basis of the standard lubrication analysis.
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1. Introduction

Coating flows within a rotating horizontal cylinder, often referred to as rimming flows, have
received an increasing degree of attention in recent years on account of the fascinating vari-
ety of flow patterns that are encountered and the intriguing mathematical properties of the
equations which have been developed to model the observed phenomena. To date, most of
the attention has been directed to the case of thin films for which the well-known lubrication
approximation can be invoked to reduce the governing equations of viscous-flow hydrodynam-
ics to the particularly simple form

ν
∂2v̂

∂y2
=g cos θ, (1)

provided that inertial and surface-tension effects are negligible. Here, v̂ is the velocity compo-
nent in the angular direction, θ is the angular coordinate, ν is the kinematic viscosity, g is the
gravitational constant, y=R− r is the distance from the rotating cylindrical boundary and r

is the radial coordinate with R being the inner radius of the cylinder. There are two boundary
conditions for this equation: the no-slip condition v̂=�R, where � is the angular velocity of
the cylinder; and ∂v̂/∂y= 0, the condition of vanishing shear stress at the free surface y=h
(cf. Figure 1). Hence, the solution of Equation (1) is
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Figure 1. Sketch of the liquid film profiles for (a) a homogeneous film, β <β∗; (b) an inhomogeneous film, β >β∗,
where θ is the angular coordinate, � is the angular velocity of the cylinder, R is the inner radius of the cylinder
and h(θ) is the film thickness.

v̂=�R− g

ν
cos θ

(
hy− 1

2
y2
)
. (2)

The approximations leading to (1) and (2) require that h�R and that |∂h/∂θ | be at most
O(h). On integrating Equation (2) with respect to y from 0 to h, we then obtain the total
volumetric flow rate within the film per unit axial distance,

Q=�Rh− 1
3
g

ν
h3 cos θ. (3)

It proves convenient to introduce the important dimensionless parameter

α≡
√
�ν

gR
(4)

and to define a dimensionless thickness η and a dimensionless flow rate q by

η≡h/αR and q≡Q/α�R2,

so that (3) becomes

q=η− 1
3
η3 cos θ, (5)

to be referred to as the standard lubrication equation (SLE), first studied in some detail by
Moffatt [1]. In addition to being a real and positive root of (5), η is required to be periodic
in 2π and to satisfy the overall liquid-volume-conservation condition, in the thin-film approx-
imation,

F = 1
πR

∫ π

−π
hdθ = α

π

∫ π

−π
ηdθ, (6)

where F is the fill fraction (i.e., the fractional cross-sectional area occupied by the liquid).
Besides requiring that the liquid film be everywhere thin relative to R, the radius of the cyl-
inder, Equation (5) presupposes steady-state (hence q is independent of θ ), plus, as was said
earlier, negligible inertia and surface-tension effects, i.e., vanishingly small Reynolds number
and inverse Bond number γ ≡ σ/ρgR2, where σ is the surface tension and ρ is the density
of the fluid. Under these conditions, the remaining two independent dimensionless groups, F
and α, can be combined into a single parameter β,

β≡F/α= 1
π

∫ π

−π
ηdθ, (7)
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(a) (b) (c)

Figure 2. The solutions of the standard lubrication equation (SLE) (i.e., Equation (5) subject to (7)) for (a) β= 1;
(b) β=β∗ =1·414 . . . ; (c) β=1·8.

the value of which implicitly determines q and therefore the solution of (5) subject to (7) plus
the periodicity condition η(θ +2π)=η(θ).

It is well-known [1–6] that the solution to the cubic Equation (5) depends critically on the
value of β. Briefly, when 0<β<β∗ =1·4142 . . . (corresponding to 0<q <2/3), η is symmet-
ric about θ = 0 and everywhere continuous. This is referred to in the literature as a homoge-
neous film and a typical such profile for β = 1·0 (q = 0·485) is shown in Figure 2(a). When
β = β∗, in which case q attains its maximum value 2/3, the film is still continuous but has
a discontinuous slope at θ = 0 equal to ±1/

√
6. This profile is shown in Figure 2(b). When

β∗<β <β∗∗ = 2·21 . . . and q = 2/3, a physically acceptable solution to (5) can still be con-
structed with, however, a discontinuity at θ = θ∗< 0, the value of which is determined by β.
Such a profile for β = 1·8 is shown in Figure 2(c). Moreover, θ∗ =−π/2 when β =β∗∗, and
when β exceeds β∗∗ no solution exists to Equation (5) subject to (7) which is everywhere real
and positive. The discontinuity in the film-thickness profile is disquieting of course, since its
existence is incompatible with the assumptions underlying the lubrication analysis leading to
Equation (5). Equally troublesome, is the absence of solutions of (5) subject to (7) when β >
β∗∗. This then raises the question as to whether and under what circumstances, the discontin-
uous solutions of Equation (5) when β >β∗ can faithfully represent the dynamics of the film
flow under consideration.

In order to answer this query, a model equation was recently proposed [6] which was
obtained by simply adding to (5) a term that accounts for the angular variation of the hydro-
static pressure. Here, we briefly discuss the basis for this model:

First, from the lubrication analysis, it can be shown that the leading-order term of the
pressure in the thin film is hydrostatic [3,6] hence,

p=α(z−η) sin θ, (8)

where p≡ p̂/ρgR is the dimensionless pressure with p̂ being the dimensional pressure and
z≡y/αR is the dimensionless distance from the rotating cylindrical boundary. Then, inserting
Equation (8) into the θ -momentum equation leads to a new term containing the θ -component
of ∇p on the right-hand of (1) in the dimensionless form, viz.

∂2v

∂z2
= cos θ + α

1−αz
{
(z−η) cos θ −η′ sin θ

}
,which can be rearranged into (9)

∂2v

∂z2
={(1−αη) cos θ −αη′ sin θ

}
,

provided that αz�1, where v≡ v̂/�R is the dimensionless angular component of the veloc-
ity. Using the same boundary conditions as before (v=1 at z=0 and ∂v/∂z=0 at z=η), the
solution of (9) is
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v=1−
(
ηz− z2

2

)
{(1−αη) cos θ −αη′ sin θ}. (10)

Therefore, in lieu of Equation (5), this modified lubrication analysis (MLA) of [6] leads then
to

q=η− 1
3
η3 cos θ + α

3

{
η4 cos θ +η3η′ sin θ

}
, (11)

the solution of which must be periodic in 2π and must satisfy the exact overall liquid-vol-
ume-conservation condition

F = α

π

∫ π

−π

(
1− αη

2

)
η dθ, (12)

from which it follows that

β≡ F

α
= 1
π

∫ π

−π

(
1− αη

2

)
η dθ. (13)

Equation (11), to be referred to as the modified lubrication equation (MLE), has the use-
ful property that its solution, when the flow is turned off, i.e., when α=0 with F fixed, gives
the exact shape of the stagnant pool at the bottom of the cylinder [6]. Thus, Equation (11)
subject to (13) has a continuous periodic solution for all α with F fixed (below a critical value
of F =0·36 as shown in [7]), in contrast to (5) subject to (7) which does not have a solution
if α<F/β∗∗.

In point of fact, Equation (11) is very similar to an expression for q given earlier by John-
son [2] as well as by Benjamin, Pritchard and Tavener [3] (see also [8]) who expanded the vari-
ables in the Stokes equations plus the boundary conditions in powers of α and, on retaining
all the O(α) terms but discarding those of higher order, arrived at

q=η− 1
3
η3 cos θ +α

{
1
2
η4 cos θ − 1

2
η2 + 1

3
η3η′ sin θ

}
, (14)

subject to (13). As shown in Ref [7], Equation(14) has continuous, periodic solutions for all α
when F ≤0·29. But, although, as was also shown in [7], the solutions of (14) are, numerically,
very close to those of (11) for the same values of α and F ≤0·29, our discussion which follows
will make use primarily of Equation (11) because of its slighter simplicity relative to (14). We
recall that, although (11) and (14) are nothing more than model equations rather than rig-
orous higher-order corrections to (5), the film profiles obtained by solving them numerically
were found to be in very good agreement with those determined experimentally [6] or via the
numerical solution of the full Stokes equations using the FIDAP software [7].

It is obvious that the solution of either (11) or of (14) subject to (13) now depends on the
values of the two independent parameters F and α, rather than merely on their ratio β as was
the case with Equation (5) subject to (7). We also note for future use that, if the capillary con-
tribution is included in the thin-film approximation, then, according to [3,8], the expression
for the hydrostatic pressure given previously, i.e., Equation (8), is modified into

p=α(z−η) sin θ −αγ (η+η′′), (15)

where, as noted earlier, γ ≡σ/ρgR2 is the inverse Bond number. We then arrive at either

q=η− 1
3
η3 cos θ + α

3
{η4 cos θ +η3η′ sin θ +γ η3(η′ +η′′′)} (16)
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or

q=η− 1
3
η3 cos θ +α

{
1
2
η4 cos θ − 1

2
η2 + 1

3
η3η′ sin θ + 1

3
γ η3(η′ +η′′′)

}
, (17)

which reduce, respectively, to (11) or (14) if γ �1 and both η′ and η′′′ are O(η). Some of the
consequences of retaining the full nonlinear capillary terms in (15) have been examined in a
recent study [9], but, here, we shall suppose that either the surface-tension effects are entirely
negligible (γ =0) or that only the linear approximation shown in (15) needs to be retained to
a first approximation.

Offhand, it might seem that (5) and (7), the equations of the standard lubrication anal-
ysis, can be recovered from (11), or (14), subject to (13) by simply setting α = 0 with F

fixed. Clearly, however, this cannot possibly work out, given that, as was pointed out ear-
lier, α = 0 (implying �= 0) leads to a stagnant pool having a shape that is incompatible
with (5), which anyhow, has no solution given that, in this case, β = ∞. The other pos-
sibility, F → 0 with α fixed, is much too restrictive, given that since, in this case, β → 0,
the film has a uniform thickness (h/R = F/2). Nevertheless, we shall show, starting from
(11), that, as α → 0, the asymmetric solution of (5) does in fact represent asymptotically
the liquid-film profiles everywhere, except at the point of discontinuity, but under extremely
restrictive conditions, specifically, for fixed β and for values of F which are, typically, almost
vanishingly small. Then, again starting from (11), we shall examine the stability of these
two-dimensional flows to both two-dimensional as well as axial disturbances. We confirm
the results obtained earlier by Benjamin et al. [3] on the basis of the standard lubrica-
tion theory, Equation (5), and show that the inhomogeneous profiles (β > β∗) of (11) are
asymptotically stable to the small disturbances referred to above and that the homogeneous
profiles (β < β∗) of (11) are only neutrally stable if surface-tension effects are ignored. We
shall further show, however, that, if the latter are included in the analysis, the homogeneous
profiles are: on the one hand, also asymptotically stable (but very weakly so for β→0) to
small two-dimensional disturbances, but, on the other hand and surprisingly to us, are asymp-
totically unstable to axial disturbances. This last result, which appears to be new, might
explain the “rings” that have been reported in the literature (cf. Figure 2 in [10]) as having
been observed under certain conditions.

2. Film profiles for α→0 and fixed β

As was said earlier, the solutions of (11) and (13) when α→0 with F fixed bear no relation
to those of the standard lubrication analysis, especially considering that the latter does not
have a solution for α<F/β∗∗. We now turn to the case α→0 with β≡F/α fixed and exam-
ine under what conditions, if any, the solutions of (11) and (13) asymptote to those of (5)
and (7). We shall examine separately the three cases: (a) 0<β<β∗; (b) β∗<β<β∗∗; and (c)
β >β∗∗.

2.1. Case a (0<β<β∗ ≡1·414 . . . )

Here, both (5) and (11), subject to (7) and (13), respectively, admit symmetric solutions, hence
the solution to (11) and (13) can be constructed simply by means of a regular perturbation
expansion. Since F <1, we expand η and q in a power series in F ,

η=η0 +Fη1 +F 2η2
2 +· · · , (18)

q=q0 +Fq1 +F 2q2 +· · · (19)
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and then substitute these in the modified lubrication Equation (11). The corresponding lead-
ing-order equation, O(1), is

q0 =η0 − η3
0

3
cos θ, subject to (20)

β= 1
π

∫ π

−π
η0 dθ. (21)

Since β is given, we can solve (20) to obtain η0 which has to satisfy (21). Clearly, the mag-
nitude of η0 is O(β). To next order, O(F), the equation is

q1 =η1

{
1−η2

0 cos θ
}

+ η3
0

3β

{
η0 cos θ +η′

0 sin θ
}
, subject to (22)

0=
∫ π

−π
η1 dθ − 1

2β

∫ π

−π
η2

0 dθ. (23)

Since both η0 and β are known, we can solve for η1 which satisfies (23). The other higher-
order terms in (18) can be obtained by following a similar procedure. This case will therefore
not be pursued any further.

2.2. Case b (β∗<β<β∗∗ ≡2·21 . . . )

Here, as was already noted in the introduction, the solution to (5) and (7) is no longer sym-
metric and has a discontinuity at θ = θ∗, with the value of θ∗, lying between −π/2 and 0,
being determined by the given value of β. For α→ 0 and β fixed, we seek therefore to con-
struct an asymptotic solution to (11) and (13) in which (5), with q= 2/3 and subject to (7),
serves as the first term of the outer solution valid for −π ≤θ <θ∗− and θ∗+<θ ≤π . Within the
inner region, the last term in (11) clearly plays a significant role and hence, following Johnson
[2], we require that the corresponding inner solution η̂ satisfy:

2
3

= η̂− 1
3
η̂3 cos θ∗ + 1

3
η̂3 dη̂

dψ
sin θ∗ +O(α) (24)

with ψ ≡ (θ − θ∗)/α. As ψ → ±∞, the solution of (24) clearly matches with η+(θ∗) and
η−(θ∗), respectively, the higher and lower positive roots of (5) at θ = θ∗ and q=2/3. On the
other hand, the solution of (24) is not unique given that it is unaffected if an arbitrary con-
stant is added to the definition of ψ . To obtain a unique solution we therefore need to deter-
mine the O(α) correction to the outer solution of (11). To this end, we let in the outer region
−π ≤ θ <θ∗− and θ∗+<θ ≤π ,

η=η0(θ)+αη1(θ)+· · · , (25)

where, as before, η0(θ) satisfies (5) with q=2/3 and subject to (7). Equation (25), when substi-
tuted in (11) and (13) and, in view of the fact that q = 2/3 +α/3 + · · · (cf. [6, top of p.17])
leads to

1
3

= (1−η2
0 cos θ)η1 + 1

3
(η4

0 cos θ +η3
0η

′
0 sin θ), (26)

hence

η1 = 1−η4
0 cos θ −η3

0η
′
0 sin θ

3(1−η2
0 cos θ)

(27)
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everywhere within the outer region. It can easily be shown that η1, which equals 5/6 at θ=0,
is continuous everywhere within this outer region.

Finally, on applying Equation (13) and taking into account that

β= 1
π

∫ π

−π
η0 dθ,

we find that

0 =
∫ θ∗−

−π

(
η1 − 1

2
η2

0

)
dθ +

∫ π

θ∗+

(
η1 − 1

2
η2

0

)
dθ +

∫ 0

−∞
[η̂−η−(θ∗)]dψ

−
∫ ∞

0
[η+(θ∗)− η̂]dψ, (28)

which implicitly determines the unknown constant, for example the value of η̂(0), needed for
obtaining a unique solution to the inner Equation (24).

Figure 3 shows the film profiles within the boundary layer as obtained from the asymp-
totic analysis given above and the numerical solution of (11) and (13). Evidently, when F =
10−3, there is good agreement between the two sets, thereby leading us to conclude that the
boundary-layer-type Equation (24), first presented by Johnson [2], correctly describes the film
profile in the intermediate region between the higher and lower positive roots of (5), with
q = 2/3, near θ = θ∗, the point of discontinuity of the film profile as obtained by the solu-
tion of Equation (5), but only under the asymptotic conditions α→0 and fixed β≡F/α with
β∗<β <β∗∗. More specifically, quantitative agreement requires that α, or F , be about 10−3

or lower.
The analysis presented above presupposes, of course, that surface-tension effects are negli-

gible. This, as mentioned earlier, requires that γ �1 provided that η′ and η′′′ are both O(η).
This latter condition is not satisfied within the inner region, however, and, as can easily be
seen by comparing (16) and (24), the surface-tension contribution is negligible within this
inner region θ − θ∗ ∼O(α) only if γ � α2, a requirement which, of course, is much more
restrictive than γ � 1. On the other hand, if γ >O(α2) but still much less than unity, sur-
face-tension effects will alter the film profile only within the inner region, leaving the outer
solution essentially unchanged.

Figure 3. The thickness profile as obtained from the
asymptotic solution of Equation (24) is compared
with those computed from the numerical solution
of the modified lubrication equation (MLE) for
β=1·8<β∗∗.

Figure 4. Two film thickness profiles as obtained from
the asymptotic solution of Equation (36) are com-
pared with those computed from the numerical solu-
tion of the modified lubrication equation (MLE) for
β=3>β∗∗.



106 A. Acrivos and B. Jin

2.3. Case c (β >β∗∗ ≡2·21 . . . )

In this case, Equation (5) subject to (7), does not have a solution and therefore the construc-
tion of the asymptotic expansion has to proceed with care. First of all, we note that, as β→
β∗∗ from below, the dimensionless film thickness becomes unbounded but integrable at θ =
−π/2, the point of symmetry of the liquid puddle that forms when the cylinder stops rotat-
ing (α=0). Therefore, with β1 =β−β∗∗>0, we seek an asymptotic solution of (11) subject to
(13) in which the solution of the algebraic equation (5) with q=2/3 and β1 =0 serves as the
outer solution on either side of the point of discontinuity θ =−π/2, plus an asymptotically
thin boundary layer within which η increases without bound as α→0. To this end, let

≡ θ +π/2

in terms of which Equation (11) becomes,

q=η− 1
3
η3 {(1−αη) sin+αη′ cos

}
. (29)

Letting α→0, we therefore recover the outer equation

2
3

=η∗ − 1
3
(η∗)3 sin

for

>0+ and <0−,

for which

1
π

∫ 3π/2

−π/2
η∗ d=β∗∗ ≡2·21 . . . .

We note that, as →0+, η∗ → (3/)1/2, and that η∗ →2/3 as →0−.
Next, we seek a transformation η̂=ηαa , ̂=α−b, with a and b both positive, such that η̂

and ̂ become O(1) within the boundary layer. In view of (29), we are left with two choices:
(i) a=1/5, b=2/5 in which case (29) becomes

dη̂

d̂
=−̂+ 3

η̂2
+O(α1/5) (30)

or
(ii) a=b=1/3

dη̂

d̂
=−̂+O(α1/3). (31)

The first choice, however, can increase the value of

β1 ≡β−β∗∗ = 1
π

∫ 3π/2

−π/2
(η−η∗)d (32)

by an amount of at most O(α1/5) and, hence, cannot lead to a solution for β1 =O(1). We are
left then with the second possibility, Equation (31), the solution to which is

η̂=A
{

1− ̂2

2A

}
, (33)
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where, in view of (32),

A= 1
2

(
3πβ1

2

)2/3

(34)

with an error of O(α1/6), as can be shown by straightforward analysis involving matching
between (33), as ̂→±√

2A, and the outer solution η∗ as →0.
Comparing (11) with (5), we find that the maximum value of η, as obtained from the

solution of the MLE (11) when β≥β∗∗, lies essentially on the η vs. θ curve found from the
solution of the standard lubrication equation (SLE) (5) when β=β∗∗ according to which, as
mentioned earlier, η=( 3

π/2+θ
)1/2 +O(1) at θ=−π/2+ε with ε→0. Therefore, we should cen-

ter the inner solution, not at θ =−π/2 but at θ =−π/2+ε. Rescaling the variables, η and θ ,
and comparing with the maximum value of the inner solution (33), we obtain

ε= 3
A2
α2/3, (35)

provided that ε→0. Therefore, the inner solution becomes,

η̂=A
{

1− (̂− ε)2
2A

}
. (36)

We remark parenthetically that, as can be seen from the analysis given above plus (16),
the capillary terms remain negligible within this boundary layer provided that γ �α2/3. This
is less stringent than the corresponding condition (γ �α2) which applies within the boundary
layer of Case b. But, even if γ >O(α2/3), surface-tension effects will alter the film profile only
within the inner solution and leave the outer solution essentially unchanged, if γ �1, as was
the case in (b).

The foregoing analysis shows then that, as α→0, with fixed β1 =β−β∗∗>0, the film pro-
file is given by: the discontinuous solution of (5) with q = 2/3 (and with the discontinuity
located at θ=−π/2 where the largest of the two real roots of (5) is infinite), plus a narrow but
relatively deep puddle symmetrically placed on either side of θ=−π/2 within which the extra
fluid given by the positive value β1 is accumulated. Again, as was the case where β∗<β<β∗∗,
there is a good agreement between the numerical solution of (11) and the asymptotic solu-
tion developed above for β = 3, as can be seen in Figure 4. It is also clear, however, that
the asymptotic analysis applies only for exceedingly small values of α (or for F when β is
fixed). For example, for β = 3 (β1 = 0·79 . . . ), the asymptotic solution developed above is in
good quantitative agreement with the numerical solution of (11) and (13) only if α or F are
below, approximately, 10−3.

We can conclude, therefore, that for fixed β>1·4142 . . . and α→0, the solution to (5) and
(7), together with the asymptotic analysis just presented, represents the salient features of the
liquid-film profile but under extremely restrictive conditions which typically require very small
values of the fill fraction F (or of α). In contrast, as shown in [6], the solutions of (5) sub-
ject to (7) and those of (11) subject to (13), have little in common if F is held fixed and, as
α decreases towards zero, β exceeds β∗ ≡1·4142 . . . .

3. Stability of the two-dimensional steady solutions to two-dimensional disturbances

This issue has already been examined in [3] on the basis of the standard lubrication Equation
(5) subject to (7), where it was shown that: (a) the symmetric solutions (β <β∗) are neutrally
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stable; and (b) the asymmetric discontinuous solutions (β∗<β <β∗∗) are asymptotically sta-
ble. We wish to examine whether these conclusions still apply if the base flow is given by the
solutions of the MLE, Equations (11) or (16) subject to (13) which are everywhere continu-
ous over the whole range of 0<β<∞. Note, however, that, as shown previously [7], β∗ is no
longer a constant is this case, but rather varies slightly with α.

Following [3], we therefore let q=q0 + δ, η=η0 + ξ with ξ�η0 everywhere (the subscript
0 refers to the unperturbed steady state) and then linearize Equations (11) and (13) to yield

δ=f0(θ)ξ + α

3
η3

0
∂ξ

∂θ
sin θ, (37)

where

f0(θ)≡1−η2
0 cos θ + 4α

3
η3

0 cos θ +αη2
0η

′
0 sin θ = 3q0

η0
−2+ α

3
η3

0 cos θ. (38)

On substituting the above in the kinematic condition

(1−αη0)
∂ξ

∂t
+ ∂q

∂θ
=0 (39)

and then separating variables by letting

ξ = exp (λt)G(θ), (40)

we therefore obtain, for the eigenvalue λ and eigenfunction G(θ),

λ(1−αη0)G+ d
dθ
(f0G)+ α

3
d

dθ

[
η3

0
dG
dθ

sin θ
]

=0, (41)

which must be solved subject to the periodicity and integral constraints respectively, i.e.,

G(θ +2π)=G(θ) and
∫ π

−π
(1−αη0)Gdθ =0. (42)

We shall consider separately the case of (a) homogeneous profiles (β <β∗) for which f0

and η0 are even functions of θ ; and (b) inhomogeneous profiles with β >β∗.

3.1. (a) Stability of the homogeneous film (β <β∗)

Following BPT [3], we let λ∗ and G∗ be, respectively, the complex conjugate of the indicated
complex quantity. Then, on multiplying (41) by f0G

∗ and its conjugate by f0G, adding the
two equations followed by integrating this sum from −π to π , we obtain after straightforward
manipulations that

(λ+λ∗)
∫ π

−π
(1−αη0)f0|G|2 dθ = α

3

∫ π

−π
η3

0 sin θ

{
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ

}
dθ. (43)

Thus, since the integral on the left-hand side of (43) is positive, given that f0 is everywhere
positive, we conclude that λ is complex if |G|2 and |dG/dθ |2 are even functions of θ , given
that f0 and η0 are also even functions. To see whether this is so, we seek to construct a solu-
tion of (41) and (42) by successive approximations in which, to begin with, we neglect the last
term in (41) [This is permissible, given that η0 ∼O(β) when β <β∗, hence αη3

0/3=O(Fβ2/3)
and therefore small for F ≤0·36]. Consequently, to a first approximation,

λ(1−αη0)G+ d
dθ
(f0G)∼=0, (44)
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the solution to which, periodic in 2π , is

G= c

f0
exp

{
−λ

∫ θ

0

1−αη0

f0
dθ
}
, (45)

also given by O’Brien [10], where c is an arbitrary constant (to be set, in most cases and with-
out loss of generality, equal to unity), and

λ=2nπ i/A with A=
∫ π

−π
1−αη0

f0
dθ =2

∫ π

0

1−αη0

f0
dθ,

n being a positive integer. [Note that the eigenfunction G=c/f0 corresponding to n=0, does
not satisfy the integral constraint given by (42).] Clearly, to a first approximation, the homo-
geneous film with symmetric profiles is neutrally stable as was already shown in [3] using, as
the base state, that given by the solution of (5) and (7). Furthermore, we note that the real
part of G, as given by (45), is even and the imaginary part is odd, hence, as expected from
the symmetry of the base film-thickness profile η0, both |G|2 and |dG/dθ |2 are symmetric
and, the right-hand side of (43) vanishes identically. Therefore, the symmetric steady solution
remains neutrally stable, even if the analysis is carried out to O(α).

To examine whether this is still the case if the expansion is continued to higher order in
α, we formally solve (41) and find, in addition to the homogeneous term (45), the particular
solution Gp due to the last term in (41)

3f0Gp

α
=−η3

0 sin θ
dG
dθ

+λ exp
{
−λ

∫ θ

0

1−αη0

f0
dθ
}

×
∫ θ

0

1−αη0

f0
exp

{
λ

∫ θ

0

1−αη0

f0
dx
}
η3

0
dG
dθ

sin θdθ, (46)

where λ is given by the corresponding expression in (45) to insure that Gp remains periodic in
2π . On substituting the expression for G given in (45) in the right-hand side of (46), we can
easily show that, to O(α), |G|2 and |dG/dθ |2 remain even, hence, as expected, the right-hand
side of (43) vanishes to O(α2) and λ remains purely imaginary to this order. In fact, on using
successive approximations, it is not difficult to see from (45) that the conclusions given above
remain valid to all orders in α. Thus, the inclusion of the hydrostatic-pressure term which
led to the improved version of the lubrication equations, viz. Equations (11) and (13), has
not led to a corresponding improvement in the stability characteristics of the symmetric film
profiles which, according to the foregoing temporal stability analysis, remain neutrally stable.
This conclusion regarding the neutral stability of the homogeneous films runs counter to the
results of a recent analysis [11,12] according to which the high-frequency (n→∞) eigenmodes
of (44) (with α= 0), if added together, can generate an “explosive” instability of these films.
Unfortunately, as was already noted [12] and as is obvious from the basic assumptions under-
lying the lubrication analysis, such high-frequency modes are incompatible with (44) being a
good first approximation to (41), given that derivates with respect to θ are no longer O(1).
Thus, given that there exists a cut-off frequency above which these high-frequency modes will
have to satisfy an equation substantially more complicated than (44), the physical existence of
such “explosive” instabilities is open to question.

In order to arrive at a definite conclusion regarding the stability of the homogeneous film,
we therefore turn to the small capillary effects, i.e., the last two terms in (16) which we have
neglected thus far in our analysis. Therefore, in lieu of (37), we have

δ=f0(θ)ξ + α

3
η3

0
∂ξ

∂θ
sin θ + α

3
γ η3

0

(
∂ξ

∂θ
+ ∂3ξ

∂θ3

)
, (47)
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where (cf. (38))

f0(θ)≡1−η2
0 cos θ + 4α

3
η3

0 cos θ +αη2
0η

′
0 sin θ +αγ η2

0(η
′
0 +η′′′

0 )

= 3q0

η0
−2+ α

3
η3

0 cos θ (48)

with η0 being the solution of (16) subject to (13) for given q0. Note that the homogeneous
film in this case is no longer symmetric about θ =0.

By repeating the arguments used previously, we therefore arrive at the equation for the
eigenvalue λ and the eigenfunction G,

λG+ d
dθ
(f0G)+ α

3
d

dθ

[
η3

0
dG
dθ

sin θ
]

+ α

3
γ

d
dθ

{
η3

0

(
dG
dθ

+ d3G

dθ3

)}
=0, (49)

hence, in lieu of (43), we have

(λ+λ∗)
∫ π

−π
f0|G|2dθ = α

3

∫ π

−π
η3

0 sin θ

{
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ

}
dθ

+α
3
γ

∫ π

−π
η3

0

[
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ

+d(f0G)

dθ
d3G∗

dθ3
+ d(f0G

∗)
dθ

d3G

dθ3

]
dθ. (50)

As discussed earlier, it is permissible, to a first approximation, to neglect the last two terms
in (49), given that both αη3

0/3 as well as γ are small, so that we have

G= 1
f0

exp
{
−2nπ i

A

∫ θ

0

dθ
f0

}
with A≡

∫ π

−π
dθ
f0
. (51)

On using the above expression for G, we can show, after some algebra, that the first and sec-
ond terms on the right-hand side of (50) reduce, respectively to

2α
3

(
2πn
A

)2 ∫ π

−π

η3
0

f 3
0

sin θ dθ (52)

and

−4αγ
3

(
2πn
A

)2 ∫ π

−π

η3
0

2f 5
0

{(
2πn
A

)2

−f 2
0 −11

(
df0

dθ

)2

+4f0
d2f0

dθ2

}
dθ. (53)

To evaluate (52) we note that, to a first approximation from (48), f0 = 1 − η2
0 cos θ , with

η0 given by the SLE (5) subject to (7), so that, to leading order, the integral in (52) vanishes.
Continuing to the next order, we find that the leading-order contribution to (52) is O(α2γ )

which is smaller than O(αγ ), the leading-order term of (53). We therefore focus on (53), set-
ting f0 =1−η2

0 cos θ as a first approximation and find by numerical integration that the whole
expression given in (53) is negative for all 0<β <β∗. A plot vs. β of the (positive) integral
in (53) for n= 1, which is obviously the least stable mode, is shown in Figure 5. It should
be noted that this conclusion regarding the (negative) sign of the right-hand of (50) is only a
first approximation which, however, should become increasingly more accurate as F → 0 for
β fixed.
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Figure 5. The values of the integral in (53) for n=1 in
the range of 0<β < β∗ ≡ 1·414 . . . . In the small win-
dow, for small β, the values of the integral given by
the asymptotic expression (55) are in good agreement
with these obtained by numerical integration.

Figure 6. The eigenfunction G(θ), with G(0) = 1, as
obtained from the modified lubrication (MLE) and
from the standard lubrication equation (SLE) for β=
2·0 and α=0·075. Note that the former is continuous
whereas the latter is discontinuous.

In addition, the asymptotic expression for the real part of the eigenvalue λ (i.e., (λ+λ∗)/2)
as β→0 can be derived as follows:

From the standard lubrication Equation (5) subject to (7), we find that,

η0 = β

2
+ 1

3

(
β

2

)3

cos θ +h.o.t. in β, (54)

provided that β�1. On substituting the above in the integral in (53), we can show, after some
algebra, that, for n= 1, the leading-order term of the integral is of the order of O(β7) with
its coefficient being 9π/27. As shown in Figure 5, there is excellent agreement for small β
between the values of the integral as obtained by numerical integration and the asymptotic
expression quoted above. Therefore, according to (50) and (53), we have,

λ+λ∗

2
=−3αγ

(
β

2

)7

+h.o.t. in β. (55)

This means that, as β→ 0, the two-dimensional disturbances to the two-dimensional steady-
state film decay according to exp(−3αγ (β/2)7t), in complete agreement with the results given
recently by Hinch and Kelmanson [13]. We see, therefore, that, according to the foregoing
analysis, the homogeneous film is indeed asymptotically stable to small disturbances, but only
weakly so, due to the weak capillary forces which have essentially no effect on the structure
of the basic flow whenever αγ �1. It is surprising that, as β→0, the thin film becomes less
stable, given that the decay rate of the small disturbances is only O(β7). The physical mech-
anisms governing such a slow decay involving a delicate interplay between rotation, gravity
and surface tension was further discussed in [13].

3.2. (b) Stability of the inhomogeneous film (β >β∗)

The equation for the eigenvalue λ and the eigenfunction G(θ) is the same as that in the pre-
vious case, viz. Equation (41) for the homogeneous film. But, before solving this equation, we
shall study the equation for the eigenvalue λ and the eigenfunction G corresponding to the
standard lubrication equation, viz.

λG+ d(f0G)

dθ
=0 with f0 =1−η2

0 cos θ, (56)
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which applies everywhere, except at the point of discontinuity θ=θ∗. The eigenfunction G has
to satisfy the periodic boundary condition.

To obtain the eigenvalue λ in (56), we expand both η0(θ) and the eigenfunction G(θ) in
a power series about the midpoint (θ =0),

η0(θ)=
∞∑
0

akθ
k and G(θ)=

∞∑
0

bkθ
k

and substitute these in (56). The leading-order term (O(1)) is

(λ−2a0a1)b0 + (1−a2
0)b1 =0. (57)

But since a0 = 1 and a1 =−1/
√

6 when β >β∗ ≡ 1·414 . . . , as can be seen by substituting the
power series of η in the standard lubrication Equation (5) with q= 2/3, the second term in
(57) vanishes automatically. Thus we obtain one eigenvalue

λ=2a0a1 =−
√

2
3
. (58)

In order to obtain all the other eigenvalues, we expand G(θ) in the general form,

G(θ)= θn−1
∞∑
0

bkθ
k,

where n is a positive integer, and substitute this together with the expansion of η used previ-
ously in (56). The two leading-order terms (O(1)) and (O(θ)) are

(n−1)(1−a2
0)b0 =0 (59)

and

(λ−2na0a1)b0 +n(1−a2
0)b1 =0, (60)

respectively. But, since a0 = 1, Equation (59) is automatically satisfied, while, from (60), we
obtain all the eigenvalues

λ=2na0a1 =−
√

2
3
n (61)

with n=1 clearly giving the maximum eigenvalue, λ=−
√

2
3 , which we have already obtained

(cf. (58)). It may seem surprising that all these eigenvalues can be obtained simply via a local
expansion of the corresponding eigenequation (here, about θ = 0), rather than from a com-
plete solution of this equation as is usually the case, but there exists at least one well-known
example where this is also the case, viz. Legendre’s equation where the (integer) eigenvalues
are obtained by requiring that the eigensolutions should remain regular at the singular points
of the equation.

The general form of the corresponding eigenfunction G for n=1 is

G= c

f0
exp

{
−
√

2
3

∫ π

θ

dt
f0

}
, (62)

where c is an arbitrary constant. But, since f0 → −2a0a1θ =
√

2
3θ as θ → 0, Equation (62)

needs to be rearranged so it can be applied for all θ .
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First, we suppose that θ >0 and split the integral in (62) into two parts,∫ π

θ

dt
f0

=
∫ π

θ

√
3
2

dt
t

+
∫ π

θ

{
1
f0

−
√

3
2

1
t

}
dt,

where the second term on the right-hand side becomes O(1) as θ → 0. Substituting this in
(62), we obtain

G= c

π

θ

f0
exp

{
−
√

2
3

∫ π

θ

(
1
f0

−
√

3
2

1
t

)
dt

}
, (63)

which is well-behaved around θ→0 and can be shown to satisfy (56) with λ=−
√

2
3 , even for

θ <0 up to the discontinuity at θ = θ∗.
Now, let G(0)=1 without loss of generality, hence

G=
√

3
2
θ

f0
exp

{√
2
3

∫ θ

0

(
1
f0

−
√

3
2

1
t

)
dt

}
, (64)

given that, as shown above, f0 →
√

2
3θ as θ→0. However, Equation (64) only applies for θ∗<

θ ≤π . On the other hand, according to (62), the eigenfunction G with G(0)=1 for −π ≤ θ <
θ∗ is,

G= c

f0
exp

{√
2
3

∫ θ

−π
dt
f0

}
,

where c=f0(π)G(π) given that G(−π)=G(π) and f0(−π)=f0(π). Note that G(π) can be
obtained from (64). In addition, on account of f being discontinuous, G is also discontinu-
ous at θ = θ∗ and, due to the existence of such a discontinuity, f0(θ

∗−)G(θ∗−) �= f0(θ
∗+)G(θ∗+).

Although such a discontinuity in f0G may seem surprising at first glance in view of Equation
(56), it has been shown [3] that, at θ = θ∗, this equation contains an extra term involving a
delta function the integral of which exactly cancels the discontinuity in f0G referred to above.

Now, returning to (41), we substitute the power series expansions of η and of G, given
previously, in (41). When n=1, the leading-order term (O(1)) gives{

λ(1−αa0)−2a0a1

(
1− 5

2
αa0

)}
b0 +

{
1−a2

0 + 5
3
αa3

0

}
b1 =0. (65)

But since, for an asymmetric base-state film profile
{

1−a2
0 + 5

3αa
3
0

}
=0 (cf. [6], Equation 1.7)]

we obtain one eigenvalue

λ=2a0a1
1− 5

2αa0

1−αa0
(66)

without solving the whole equation (41). When n≥2, the O(1) term in the expansion of G(θ)
leads to

(n−1)
{

1−a2
0 +

(
1+ n

3

)
αa3

0

}
b0 =0, (67)

while the O(θ) term gives{
λ(1−αa0)−2a0a1

[
n− α

2
(n−1)− α

2
a0(n

2 +3n+1)
]}
b0

+
{

1−a2
0 + (4+n)α

3
a3

0

}
b1 =0, (68)
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respectively. But, given that
{

1−a2
0 + 5

3αa
3
0

}
= 0, we find that, although (67) is

automatically satisfied only when n=2, the second term in (68) does not vanish automatically
for any n≥2. Hence, using this method, we can only obtain one eigenvalue (n=1), viz. (66).
But, in view of our findings regarding the eigenvalues given by the standard lubrication equa-
tion, viz. (58), we can safely take it for granted that the eigenvalue given by (66) corresponds
to the least stable mode and that the remaining eigenvalues, which can only be obtained via
a numerical solution of the full eigenequation, can be ignored. Moreover, given that a0 and
a1 are only weakly dependent on β for β >β∗ and fixed F , it is evident that λ, as given by
(66), is similarly essentially constant – a somewhat surprising result. Moreover, in view of [6],
a0 =1+5α/6+O(α2) and a1 =−1/

√
6+O(α), we have that

λ=2a0a1
1− 5

2αa0

1−αa0

∼=−
√

2
3

+O(α)<0. (69)

Hence, in agreement with the result found previously [3,10] using the standard lubrication
analysis (SLA), the stability analysis given above shows that the liquid film is indeed asymp-
totically stable when the film profile becomes asymmetric, even for zero surface tension. Note

that, when α→0 in (69), the eigenvalue λ becomes equal to −
√

2
3 , which is precisely the max-

imum eigenvalue given by the standard lubrication analysis, even though the latter no longer
applies when β >β∗∗. This, indeed, is a very curious result. Shown in Figure 6, for a par-
ticular case, is a plot of the eigenfunction G(θ) vs. θ showing that the former is everywhere
continuous if we use the modified lubrication Equations (11) and (13). The corresponding ei-
genfunction, given by (62), is also plotted. Clearly, the two eigenfunctions are very different,
even though the corresponding eigenvalues differ by only approximately 7% in this case.

4. Stability of the two-dimensional steady solutions to three-dimensional disturbances

This issue also has been examined in [3], on the basis of the standard lubrication equation
(5) subject to (7), where it was shown that the steady flow is neutrally stable and that steady
perturbations exist for arbitrary wavelength along the cylinder axis as long as the liquid-
film profile is symmetric (β <β∗); on the other hand, when the liquid profile is asymmetric
(β∗<β<β∗∗), the steady solutions are asymptotically stable. Here, using the continuous solu-
tions of the modified lubrication Equations (11) or (16) subject to (13), we wish to examine
whether or not these conclusions remain valid for the whole range of 0<β <∞. Note that,
as remarked earlier, β∗ given by the MLE is no longer a constant but rather varies slightly
with α.

In the thin-film approximation, the dimensionless axial velocity w(≡ ŵ/�R with ŵ being
the dimensional one) is given by [3,7,14]

w=α
(
ηz− 1

2
z2
)
∂η

∂x
sin θ, (70)

where x≡ x̂/R is the dimensionless axial coordinate with x̂ being the dimensional one. Con-
sequently, the volume-conservation equation for a three-dimensional flow is [3,7,14]

(1−αη)∂η
∂t

+ ∂q

∂θ
+ α

3
∂

∂x

(
η3 ∂η

∂x

)
sin θ =0. (71)
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This equation can also be derived starting from the MLA. Letting η=η0 +ξ with ξ�η0 and
in view of (37) and (38), we therefore arrive at

(1−αη0)
∂ξ

∂t
+ ∂(f0ξ)

∂θ
+ α

3
∂

∂θ

[
η3

0
∂ξ

∂θ
sin θ

]
+ α

3
η3

0
∂2ξ

∂x2
sin θ =0 (72)

which, on separating variables by letting

ξ = exp(λt)G(θ) sin(kx+b), (73)

where k and b are real constants, becomes

λ(1−αη0)G+ d(f0G)

dθ
+ α

3
d

dθ

[
η3

0
dG
dθ

sin θ
]

− α

3
k2η3

0G sin θ =0. (74)

The above must be solved for the eigenvalue λ and eigenfunction G subject to the periodicity,

G(θ +2π)=G(θ)
and the integral constraint,∫ (πl+b)/k

−(πl+b)/k
sin(kx+b)dx

∫ π

−π
(1−αη0)Gdθ =0 where l is integer. (75)

Obviously, the latter constraint is automatically satisfied for any eigenfunction G. In addition,
it can easily be shown [15] that the MLA and, therefore, the kinematic condition (71) and
the eigenequation (74), are only valid for long-wavelength disturbances, specifically for axial
disturbances having wavelengths greater than or comparable to the characteristic thickness of
the film.

We shall consider separately the case of (a) homogeneous profiles (β <β∗), and (b) inho-
mogeneous profiles with β >β∗.

4.1. (a) Stability of the homogeneous film (β <β∗)

By means of the same procedure as used previously in the corresponding
two-dimensional case (β <β∗), we begin with a first approximation to Equation (74),

λ(1−αη0)G+ d(f0G)

dθ
− α

3
k2η3

0G sin θ ∼=0, (76)

the solution to which, periodic in 2π , is

G= 1
f

exp

{
α

3
k2
∫ θ

0

η3
0 sin θ

f0
dθ

}
exp

{
−λ

∫ θ

0

1−αη0

f0
dθ
}
, (77)

where

λ=2πmi/A with A=
∫ π

−π
1−αη0

f0
dθ =2

∫ π

0

1−αη0

f0
dθ

and m is zero or any positive integer. When m=0, there exists a time-independent perturba-
tion with arbitrary dependence on x,

ξ =G sin(kx+b), (78)

where

G= 1
f0

exp

{
α

3
k2
∫ θ

0

η3
0 sin θ

f0
dθ

}
.
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Obviously, the above expression for G automatically satisfies periodicity as well as the integral
constraint (75), in contrast to the corresponding two-dimensional case, i.e., G= 1/f0, which
cannot satisfy the integral constraint (42).

Let λ∗ and G∗ be, respectively, the complex conjugate of the indicated complex quan-
tity. Performing the same operation as shown in the corresponding two-dimensional case, we
obtain

(λ+λ∗)
∫ π

−π
(1−αη0)f0|G|2dθ

= α

3

∫ π

−π
η3

0 sin θ

{
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ
+2k2f0|G|2

}
dθ. (79)

Since η0, |G|2 and |dG/dθ |2 are symmetric (this was demonstrated in detail in the previous
section dealing with the two-dimensional disturbances), the right-hand side of (79) vanishes.
Therefore, the symmetric steady solution remains neutrally stable to the axial disturbances,
even if the analysis is carried out to O(α).

Again, as was the case with the stability to two-dimensional disturbances discussed earlier
(cf. the comments following (46)), the conclusion given above runs counter to the results of a
recent analysis [14] according to which, the cumulative effect of short-wavelength axial pertur-
bations (i.e., k→∞) leads to an “explosive” instability. But since, as noted above, lubrication
analysis limits the range of wavenumbers to k<O(1/α), the physical existence of the “explo-
sive” instabilities described in [14], which at these high wavenumbers and frequencies would
be anyhow suppressed by surface tension, is also open to question.

Let us next consider the effects of surface tension. Taking account of the capillary contri-
bution arising from the film-thickness variation along axial direction, we extend the expres-
sion for the hydrostatic pressure in the two-dimensional case, i.e., Equation (15), to this axi-
ally non-uniform case as

p=α(z−η) sin(θ)−αγ
(
η+ ∂2η

∂θ2
+ ∂2η

∂x2

)
. (80)

Then, by repeating the steps used earlier in the two-dimensional case, we have (cf. (47)),

δ=f0(θ)ξ + α

3
η3

0
∂ξ

∂θ
sin θ + α

3
γ η3

0

(
∂ξ

∂θ
+ ∂3ξ

∂θ∂x2
+ ∂3ξ

∂θ3

)
, (81)

where f0 is given by (48) with η0 being the solution of (16) subject to (13) for given q0. By
repeating the arguments used previously in the two-dimensional case (cf. (49)), we arrive at
the equation for the eigenvalue λ and the eigenfunction G(θ),

λG+ d
dθ
(f0G)+ α

3
d

dθ

[
η3

0
dG
dθ

sin θ
]

+ α

3
γ

d
dθ

{
η3

0

[
(1−k2)

dG
dθ

+ d3G

dθ3

]}

−α
3
k2η3

0G sin θ − α

3
γ k2η3

0

{
(1−k2)G+ d2G

dθ2

}
=0. (82)



Rimming flows within a rotating horizontal cylinder 117

Note that the last term on the left-hand side of the above equation results from the modifi-
cation of the axial velocity due to the pressure (80). Hence, in lieu of (79), we have

(λ+λ∗)
∫ π

−π
f0|G|2dθ = α

3

∫ π

−π
η3

0 sin θ

(
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ
+2k2f0|G|2

)
dθ

+αγ k
2

3

∫ π

−π
η3

0

{
2(1−k2)f0|G|2 −2f0

∣∣∣∣dGdθ
∣∣∣∣
2

− df0

dθ
d|G|2

dθ
+f0G

∗ d2G

dθ2

+f0G
d2G∗

dθ2

}
dθ + αγ

3

∫ π

−π
η3

0

{
2f0

∣∣∣∣dGdθ
∣∣∣∣
2

+ df0

dθ
d|G|2

dθ

+d(f0G)

dθ
d3G∗

dθ3
+ d(f0G

∗)
dθ

d3G

dθ3

}
dθ. (83)

To evaluate the integrals on the right-hand side of the above equation, we again make use of
successive approximations. Clearly, provided that αη3

0/3 is small and that k2 ∼O(1) or less,
the expression for G in (77) is, to first order,

G= 1
f0

exp
{
−2mπ i

A

∫ θ

0

1
f0

dθ
}

with A=
∫ π

−π
1
f0

dθ (84)

with m being zero or any positive integer, and the leading-order term of f0 in (48) is

f0 =1−η2
0 cos θ,

where η0 is given by the SLE (5) subject to (7) rather than by (16) subject to (13).
Now, it is obvious that the first term on the right-hand side of (83) vanishes if G and f0

are given by (84). Then, on repeating the analysis of the two-dimensional case given earlier
(cf. the comments following (53)), it is easy to show that, to next order, this term becomes
O(α2γ ) and, therfore is of higher order than the remaining two O(αγ ) terms on the right-
hand of (83). We found, using numerical integration with G and f0 given by (84), that when
m in (84) is any positive integer, the sum of these two terms, is negative for k>0 and becomes
increasingly more negative with increasing k; however, when m=0 (i.e., G=1/f0), the sum has
a positive maximum, thereby implying that, according to our linear analysis, the inclusion of
the weak capillary effects renders the homogeneous film asymptotically unstable to small axial
disturbances having a wavelength of the order of the cylinder radius. Such a family of eigen-
value profiles is shown in Figure 7 for three typical cases β = 0·13, 0·67 and 1·23. Clearly,
the magnitude of the most rapidly growing disturbance for m=0 decreases with decreasing β,
implying that the symmetric profiles should become more unstable at the larger value of β. It
should be noted, however, that, although our foregoing conclusion regarding on the film sta-
bility is only a first-order approximation in which the base flow is given by the standard lubri-
cation analysis (SLA), such a conclusion should become more and more accurate as F → 0
for β fixed which is the prerequisite for using the SLA.

In addition, by means of a method similar to that described in the corresponding two-
dimensional case (cf. (54)), we can also obtain, for β→ 0, the asymptotic expression for the
real part of the eigenvalue λ for m=0, i.e.,

λ+λ∗

2
= αγ

3
k2(1−k2)

(
β

2

)3

+h.o.t in β, (85)

which, as shown in Figure 7, closely matches the value of (λ+ λ∗)/2 calculated numerically
from (83) when β is less than about 0·7. In fact, when m= 0, the eigenvalue λ is real and
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Figure 7. The real part of the eigenvalue λ has a positive maximum when m= 0 in (84) with the magnitude of
the most rapidly amplified disturbance increasing with an increase in the value of β. As β→ 0, the values of the
real part of λ for m=0 predicted by the asymptotic expression in Equation (85) are in close agreement with those
obtained by numerical calculation from Equation (83) with G given by (84).

so is the corresponding eigenfunction G. Therefore, as β→ 0, we can expand λ and G in a
power series in β, i.e.,

λ=0+λa
(
β

2

)3

+λb
(
β

2

)4

+h.o.t in β

and

G= 1
f0

+Ga
(
β

2

)3

+Gb
(
β

2

)4

+h.o.t. in β

with

1
f0

=1+
(
β

2

)2

cos θ + 2
3

(
β

2

)4

cos2 θ +h.o.t. in β

and substitute them together with the expression for η in (54) in (82). Then, it is a straight-
forward matter to show that the first leading-order term involving λa gives

λa = αγ

3
k2(1−k2),

which is in complete agreement with (85), with the corresponding eigenfunction Ga being

Ga = α

3
k2(cos θ −1).

Also, the next order in λ (O(β4)) is zero, i.e., λb = 0, with the corresponding eigenfunction
Gb being

Gb= α

12
k2(cos 2θ −1).

Note that, according to Equation (85), the corresponding wavenumber k of the most rapidly
growing disturbance equals

√
2/2 with the dimensional wavelength being 2R

√
2π . Since the

wavelength of such a disturbance is of the order of the cylinder radius, it appears likely that
the mechanism for the instability, just presented, of a homogeneous liquid-film to axial dis-
turbances due to surface tension, is closely related to that of the well-known Rayleigh insta-
bility of a stationary liquid-film coating the surface of a non-rotating cylinder in the absence
of gravity. Specifically, the effects of surface tension, as expected, always tend to minimize the
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area of the air–liquid interface of the thin film, thereby destabilizing the thin film to axial dis-
turbances but stabilizing it in the two-dimensional case. Furthermore, it is worth remarking at
this point that Hosoi and Mahadevan [8] also examined this axial-stability problem by means
of a numerical linear analysis starting from lubrication equations very similar to ours, but
including inertia effects, and concluded that, for F =0·06 and γ =0·5, the flow should remain
stable as long as inertial effects are weak. In view of our results, however, it would appear
that some of the calculations of [8] could have been marred by numerical inaccuracies.

4.2. (b) Stability of the inhomogeneous film (β >β∗)

We begin with Equation (74) for the eigenvalue λ and the eigenfunction G(θ) and expand
both η0(θ) and G(θ) in a power series about θ =0, as was done earlier in the corresponding
two-dimensional case. Then, we substitute these in (74). The first and second leading-order
terms are exactly the same as those in the two-dimensional case, i.e., Equations (67) and (68),
and therefore the expression for the maximum eigenvalue λ is, as before,

λ=2a0a1
1− 5

2αa0

1−αa0

∼=−
√

2
3

+O(α)<0.

Interestingly, this maximum eigenvalue λ is independent of k, the wavelength of the small
axial disturbance, and is also essentially independent of β. This result shows that the two-
dimensional steady solutions are asymptotically stable to axial perturbations for β >β∗, even
for zero surface tension.

5. Discussion

First of all we have shown, on the basis of the modified lubrication analysis (MLA) leading to
Equation (11) (which, we wish to stress once again, is a model equation, albeit a surprisingly
accurate one [6]), that the discontinuous solutions of the SLE for β >β∗ ≡1·414 . . . correctly
represent the asymmetric film-thickness profiles but only under the restrictive condition: α→0
with β fixed. On the other hand, as shown previously [6], the solutions to the standard lubri-
cation equation fail to represent the film-thickness profiles when α is decreased with F =αβ
fixed, especially given that Equation (5) subject to (7) has no physically acceptable solutions
when β >2·21 . . . .

Secondly, according to the stability analysis given by the modified lubrication equation for
these two-dimensional rimming flows, we have found that, as shown previously [3,10] on the
basis of the standard lubrication theory, the inhomogeneous profiles are asymptotically stable
to small two-dimensional as well as axial disturbances. In addition, the maximum eigenvalue
of these asymmetric profiles (i.e., the negative eigenvalue with the smallest absolute value) can
be obtained simply by expanding the corresponding eigenequations about θ = 0, rather than
from a complete solution of these equations. It is surprising that this maximum eigenvalue is
essentially independent of β and becomes equal to the maximum eigenvalue given by the stan-
dard lubrication equation as α→ 0, even though the corresponding eigenfunctions are sub-
stantially different.

On the other hand, again in conformity with [3], the homogeneous profiles are found to be
neutrally stable to small two-dimensional, as well as axial disturbances if surface-tension effects
are neglected. When the latter are included in the stability analysis, however, the film thick-
ness profiles are found to become asymptotically stable to small two-dimensional disturbances
with the absolute value of the real part of the least stable eigenvalue increasing monotonically
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with β for 0<β <β∗, and to become asymptotically unstable to small, long-wavelength (i.e.
0<k≤O(1)), axial disturbances with the growth rate of the most rapidly amplified disturbance
increasing monotonically with β for β <β∗. This implies that, when surface tension is included
in the analysis, the homogeneous profiles at the larger value of β should be more stable to
two-dimensional disturbances, but should become more unstable to axial disturbances.

The theoretical predictions regarding the stability of inhomogeneous films are consistent
with all the experimental results reported in the literature [3,6,16,17]. For homogeneous films,
however, the picture is less clear because, especially within the range 0·7<β<1·414, the film
profiles are often highly irregular and time-dependent due to a slight misalignment of the cyl-
inder axis from the horizontal [3,17,18]. Clearly, additional experiments are required in order
to test the characteristics of the homogeneous films.
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